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SUMMARY 
The incompressible Navier-Stokes equations-and their thermal convection and stratified flow analogue, 
the Boussinesq equations-possess solutions in bounded domains only when appropriate/legitimate 
boundary conditions (BCs) are appended a t  all points on the domain boundary. When the boundary-or, 
more commonly, a portion of it-is not endowed with a Dirichlet BC, we are faced with selecting what 
are called open boundary conditions (OBCs), because the fluid may presumably enter or leave the domain 
through such boundaries. The two minisymposia on OBCs that are summarized in this paper had the 
objective of finding the best OBCs for a small subset of two-dimensional test problems. This objective, 
which of course is not really well-defined, was not met (we believe), but the contributions obtained probably 
raised many more questions/issues than were resolved-notable among them being the advent of a new 
class of OBCs that we call FBCs (fuzzy boundary conditions). 
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INTRODUCTION 

Oftentimes one of the biggest difficulties encountered in the mathematical modelling of a physical 
system is that of boundary conditions. This difficulty arises because of the necessity to truncate 
the system domain in order to make the problem tractable. Nature is usually silent, or in fact 
perverse, in not communicating the appropriate ones. In the case of modelling via computational 
fluid dynamics, the boundary condition dilemma most often occurs at flow-through portions of 
the boundary and in particular at outflows or more generally open portions of the boundary 
on which inflow and outflow may even co-exist. The boundary conditions on such open portions 
of the boundary are a necessary evil that will hereafter be referred to as OBCs. We believe that 
there are no ‘true’ OBCs, thus explaining Nature’s silence. We also believe and may demonstrate 
herein that perhaps nowhere else do theory and practice seem to clash so much. This paper and 
the OBC minisymposium that it describes are based in part on the belief in the premise that 
OBCs are simply a necessary evil for CFD and on two facts: 

1. Computational domains often must be truncated from the rest of the universe. 
2. Mathematics forces us to select an OBC. 

However, mathematics does not tell us how to select OBCs that cause the least upstream 

CCC 027 1-209 1 /94/1OO98 3-26 
0 1994 by John Wiley & Sons, Ltd. 

Received 25 December 1993 
Revised 27 March 1994 



984 R.  L. SANI AND P. M. GRESHO 

influence or that permit the most graceful exit. It does not tell us how to synthesize the connection 
with the rest of the universe. 

While we are not able to state the 'best' OBCs, if indeed such exist, we can list some qualities 
that they would display: they would permit both the flow and anything it carries to exit the 
domain gracefully and passively and not have any effect on the behaviour of the solution in the 
domain near the open boundary (and especially far from it); they would be transparent; they 
would lead to the same solution inside the common domain no matter where truncation 
occurred. 

On the other hand, we have Schutt's opinion,' perhaps somewhat idealistic but probably 
shared by many, regarding the placement of the open boundary: 'Nothing interesting should 
be happening at such a boundary; otherwise the boundary is in the wrong place'. 

In order to gain some insight and to attempt to find the best OBCs for incompressible flows, 
we organized two OBC minisymposia in conjunction with Professor Cedric Taylor, University 
of Wales, at his sixth and seventh International Conferences on Numerical Methods in Laminar 
and Turbulent Flow. A set of four test problems evolved from a solicitation of interest in and 
test problems for the OBC minisymposia. The final four were characterized by: 

1. All were 2D laminar flows. 
2. There were two sets of governing equations, isothermal and Boussinesq, with two problems 

for each set. 
3. There were two types of flows with two problems each, steady state and time-dependent. 
4. There were two domains for each problem, one nearly long enough and the other definitely 

(and intentionally) too short-and obtained by simple truncation of the long domain (no 
extra fine meshes permitted near the outlet). 

The governing equations in dimensionless form are 

aulat + U - V U  = -VP + Re-'V2u + Fr-'kT, (1) 

V * u  = 0 or V2P = V -(Re-'V2u + Fr-'kT - u -  Vu), (2a,b) 

aTlat + U - V T =  Pe-'V2T (3) 

and 

in primitive variable form. Note that (2b) can only be used to replace (2a) for time-dependent 
problems; steady state problems need (2a). Note too that boundary conditions for (2b) are usually 
obtained from (1) i f  the velocity (and acceleration auldt) is known on the boundary; at open 
boundaries dulat is not known, thus requiring pressure BCs to be obtained in other ways. 

In the $-o formulation (1) and (2) are replaced by 

awl& + U - v o  = ReF'v'w + Fr-' aTIax, 

v2* + w = 0. 
(4) 
( 5 )  

and should prove to be useful to 
other investigators and for reasons other than simply testing OBCs. Here we will reiterate the 
characteristion of and provide a brief commentary on each test problem. 

The solutions of the benchmark problems are 

I .  BFS: steady f low past a (simplified) step at Re = 800 ( T  = 0)  

This is not the true backward-facing step problem, because we eliminated the inlet region for 
simplicity so we could focus on the outlet. Re = 800 was chosen because it is an interesting 
value for which a second eddy (separation bubble) exists on the ceiling of the channel. The short 
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domain was purposely selected to ‘chop’ this top eddy, thus providing the OBC with the 
challenge of letting fluid also flow into the domain. 

2. Stratifed BFS: test problem 1 except T # 0, with Pe = 800, Fr = 16/9 

The only change from test problem 1 is to introduce a stably stratified fluid that wants 
to bounce up and down in a manner somewhat analogous to moutain lee waves. The 
Froude number selected (with Ri = 1/Fr = 9/16) gives an interesting set of five recirculation 
zones (eddies), three on the floor and two on the ceiling. Also, the additional dimensionless 
parameters-in addition to the Richardson number above-are: Gr = Re2/Fr = 3.6 x lo5 and 
Ra = PrGr = 3.6 x 10’. Here the truncated domain again chops one of the eddies and comple- 
tely loses the most downstream of them. 

3. VSCC: vortex shedding past a circular cylinder at Re = 100 

The Karman vortex street at Re = 100 is a well-studied problem in both physical and 
computational laboratories. Letting vortices leave the grid passively (and with minimally 
distorted shape) is the desired behaviour here-but only part of it. Good OBCs will not defile 
the usual global quantities such as the Strouhal number, lift and drag coefficients, etc. The 
truncated mesh in this case is especially severe, occurring only four diameters from the cylinder 
centre and thus in a region in which the vortices are actually still in the formative stage. 

4.  PBCF: Poiseuille-Benard channelflow at Re = 10, Pe = 20/3, Fr = 1/150 

This channel flow would be a simple Poiseuille flow if there were no heating from below and 
Benard flow (at Ra = PeRe/Fr = lo4) if the ends were closed. However, the heating causes 
Benard roll cells even in the presence of forced flow-they are translating periodic roll cells. As 
for vortex shedding, a good OBC will permit a passive exit and not corrupt upstream behaviour, 
including the quantitative measures of wavelength, frequency, velocity extremes, average Nusselt 
number, etc. 

Following the second minisymposium held at Stanford University at the seventh International 
Conference on Numerical Methods in Laminar and Turbulent Flows in July 1991, there were 
nine groups who reported on the performance of the outflow boundary conditions implemented 
in their particular numerical scheme on the benchmark problems. Unfortunately, none of the 
groups reported on all the benchmark problems and there was little uniformity in the type of 
information reported; thus the scope of this summary will be limited by these facts. Below we 
comment briefly on the general techniques and results of the various groups and, in closing, 
make some general remarks which we hope will be useful and provide a stimulus for further 
discussion and investigation of the OBC problem. An earlier, preliminary summary of the 1991 
symposium, including some additional discussion, is available in Reference 6. 

THEORY 

In this section we first attempt to summarize what we (the authors) know (or believe we know) 
theoretically regarding some ‘open’ boundary conditions for the incompressible Navier-Stokes 
equations-partly to set the stage for some of the confusion that follows, but partly, hopefully, 
to help clear the air. After discussing the PDE case, we summarize some related issues for the 
spatially discretized case. 

The first theoretical notion worth mentioning is this: V - u = 0 on r (as well as of course in 
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Q) is of crucial importance in incompressible flow and can in some general sense be construed 
as a boundary condition (both on the OBC portion as well as on all other portions). 

Next we summarise three well-posed OBCs for all quantities (symbolized by cp) except the 
normal camponent of velocity: 

(i) cp = 0 (or other specified value) is usually a poor choice, especially in practice (i.e. via 
approximate/numerical solutions), because the thin boundary layer that it endenders for large 
Peclet or Reynolds number (the case of most interest) can cause havoc with numerical schemes 
in the form of wiggles (oscillations) that permeate far upstream if the ‘artificial’ outflow boundary 
layer is not re~olved .~  

(ii) acp/an = 0 is usually a good choice-the thin boundary layer that exists is usually innocuous 
even when not resolved and is an example of what some call a good feature of a numerical 
method (ignoring boundary layers that it cannot see rather than ‘overreacting’ to them).7 

Related to (i) and (ii) above is the statement of Naughton? ‘From the theory of singular 
perturbation problems it is well-known that boundary layers are weaker if boundary conditions 
on the derivatives are used (soft boundary conditions) rather than boundary conditions on the 
function itself (hard boundary conditions)’. In both (i) and (ii) the boundary layer thickness is 
O(Re-’ )  or O ( P e - ’ )  and is the region in which advection and diffusion are both significant/ 
important. 

(iii) &plat + Vacp/dn = 0, where V is ‘user-specified’, but cannot be zero, and should be positive 
if fluid is leaving the domain. (The average normal velocity through the boundary is a reasonable 
candidate.) This OBC may be gaining in popularity over acp/an = 0 for reasons which are not 
entirely clear to us. 

Turning now to what might be accurately be called the nemesis of incompressible flow, we 
summarize a portion of what we know about OBCs for the normal momentum equation: here 
u, = n - u and au,/an = n * V(n u), at least for straight/planar boundaries. 

(a) du,/an = 0 is illegal (‘hopelessly ill-posed’-V. Girault, personal communication) because 
of insufficient information; the system (PDE’s and boundary conditions) is under determined, 
resulting (in general) in an infinite number of solutions. In addition, in 2D it is often overly 
restrictive on u, (the tangential component of velocity), causing u, = 0 (via V - u = 0) regardless 
of the actual (or ostensible) boundary condition applied to u,. 

(b) du,/an = 0 and P = 0 is illegal (ill-posed) because of too much information; the system is 
overdetermined and no solution exists in general. 

(c) au,/an = 0 and P = 0 at just one point (usually taken to lie on roec) may be legal, but we 
have our doubts because it seems to be lacking a boundary condition for the pressure Poisson 
equation (PPE) (2b)-as is also the case with (a). 

(d) au,/at + Vdu,/an = 0 is illegal (ill-posed) like (a) above owing to insufficient information. 
Unlike (a), however, it does not cause u, = 0. 

(e) PRe- ’ du,/dn - P = 0 (or other specified value), where P = 1 (conventional form) or fl = 2 
(stress divergence form), is well-posed but may not always be useful. Note that /? = 1 is to be 
preferred because the stress divergence formulation requires au,/dt + du,/an = 0 as the homo- 
genous OBC for u, (zero shear stress), which is often worse than &,/an = 0 that obtains when 
/3 = 1 (see e.g. Reference 9). Note too that this BC is an NBC (natural boundary condition) when 
implemented via the Galerkin weak formulation. 

(f) au,/at + Vau,/an = ReVP is, we believe (assert), legal (well-posed) but, to our knowledge, 
untested. It brings the pressure back into (d) a la (e). 

To show the ill-posedness of OBCs (a), (c) and (d), consider a simple counterexample: the 
steady Stokes equations in a domain comprising the unit square with u = u = 0 top and bottom 
and OBC‘s elsewhere. The family of solutions u = a(y2 - l), u = 0, P = 2ax + b for all a and b 
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satisfies the OBC's of (a) and (d), and the family comprising the same u, u but with P ( x )  = 
Po + 2a(x - x,,) for arbitrary a satisfies (c) and reduces the 'indeterminateness' from a double 
to a single infinity of parameters. In contrast, (e) and (f) above yield the unique solution u = 0, 
P = 0. The way to prove that (b) is ill-posed" is to compare it with (e) for p = 1, which is known 
to be well-posed; since the latter does not generally display au,/an = 0 and P = 0, (b) is 
overspecified and thus ill-posed. 

In the spatially discretized approximation the PDE's simplify to DAE's (differential-algebraic 
equations) in the time-dependent case and to non-linear algebraic equations in the steady case. 
We now attempt a brief summary of some of the related OBC issues-for additional discussion 
see Reference 11. The vehicle for the 'demonstration' will be the simple steady Stokes equations, 
whose discrete form reads 

K U  + G p  = f; @a) 

DU = 9, (6b) 

where Ku x - R e -  'V'u, G p  x V P ,  Du x -V * u and f and g are data that include inhomogen- 
eous Dirichlet boundary conditions and, in 1; any 'body force' terms. In discrete simulations 
which are said to utilize OBC (a) or (c) above, the gradient matrix G always annihilates a constant 
(hydrostatic, ph) pressure vector, e.g. G * ( l  + l)T = 0, which is simply a statement that the 
hydrostatic pressure vector is always in the null space of the (singular) Stokes matrix 

i.e. 

where ph = (1 --t l)T. Now in some finite difference (or finite volume) codes it is true that D and 
G are almost transposes of each other; in fact, except at or near rose, it is often true that D' = G. 
One more very relevant and very important point is this: even though Gp, = 0, there are no 
redundant continuity equations in (6b), so that when one removes the singularity by specifying 
the pressure at one node, one also sacrifices both local (at the selected node) and global discrete 
mass conservation. On the other hand, if one does not 'peg a pressure', thus retaining mass 
consistency, the singular A-matrix generally leads to an ill-posed algebraic system--(6) has no 
solution for general data (f; 9). The only time the unpegged case is solvable is when the right-hand 
side is orthogonal to the null vector of A', i.e., the solvability condition on (6)  is then 

WT f + q'g = 0, (8) 

where (w, q)' is the null vector of AT: 

KW + DTq = 0 (94  

G'w = 0. (9b) 

(To obtain (8), take the inner product of (w, 4)' with (6), using (9).) 
If an FDMer were sufficiently bothered by the above problems (peg a pressure and lose mass 

balance; do not and come up against an ill-posed problem) to ask an FEMer for help, the 
response might be the following. Yes, I can tell you how to generate a solvable problem and 
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retain mass consistency, but it will involve changing the data (n. It goes like so and relies on 
the fact that G’ = D ‘almost everywhere’ (away from the open boundary). 

(i) Solve the problem 

K u  + DTp = f, (104 

DU = g (lob) 
for your given data. Do not specify (peg) a pressure. It turns out that the (symmetric) matrix in 
(10) is non-singular (DTph # 0 in particular) and thus the problem in linear algebra is well- 
posed-for all (f, g)-as are the underlying PDEs, with OBC(e), which (10) approximates. 

(ii) Set up the singular system 

K u  + G p  = f + (G - DT)p 3 1, (1 1 4  

DU = g, (1 1b) 
a system whose (unsymmetric) matrix is singular (GPh = 0) but whose modified right-hand side 
(f, g) is now consistent by construction, i.e. the solution to (11) is the same as that of (10)-at 
least up to ph:  p + yph for arbitrary y also solves (1 1). There are four key points: 

1. Discrete mass conservation is achieved. 
2. The system is consistent singular. 
3. The implied OBC for the PDE may be of the ‘fuzzy’ variety. 
4. The consistent data for (11) can ostensibly only be generated by first solving (10). 

It is the last point that is the ‘awkward’ one (although the third point is also not pleasant) and 
the one that makes the FDM system (and solution) look more like that which would have come 
from the analogous FEM in the appropriate weak formulation, where here ‘appropriate’ means 
that the pressure gradient term was integrated by parts. This causes DT to look like a gradient 
everywhere except on roec, where it looks more like a pressureforce on the boundary. That is, 
‘since (11) has the same solution (up to P h )  as (lo), just solve (10)’ seems to be the bottom line. 

There is, however, a flip-side to this construction: (e) looks too much like (and would respond 
like) the FEM system that can generate bad results near roec when there is a significant body 
force (e.g. buoyancy, centrifugal force) which must be balanced by the (largely hydrostatic) 
pressure distribution, as in ‘stratified’ flow (test problems 2 and 4). For further elaboration of 
these issues see References 12 and 13, but the basic problem is easy to state: when large variations 
in pressure exist at the outlet, BC (e) will usually cause large errors at and near the outlet-but 
it would, assert, give excellent results for test problems 1 and 3. 

Thus we now know how to make FDM mimic FEM, which may sometimes be useful. 
However, we still do not known enough about going in the other direction; i.e. telling the 
FEMer how to emulate the du,/an = 0 OBC by cleverly pegging P to generate a non-singular 
(reduced) matrix yet generating acceptable, or even very small, mass inconsistencies-unless it 
is simply this (which we have briefly experimented with and sometimes obtained disappointing 
res~l t s ’~) :  do not integrate V P  by parts when generating the weak formulation, an easy thing 
to do-usually. (It is not easy if the simplest finite element, that using piecewise-constant pressure, 
is employed, since then the G-matrix is zero.) 

Finally, for FDM or FEM when G is a gradient everywhere (and P h  is thus a mode), we are 
confronted with the disturbing question, related to the alleged ill-posedness of the PDE’s. ‘What 
then is the (implied) boundary condition for the (implied) pressure Poisson equation?’. This is 
the situation that is often encountered in FDM and less often in FEM-occurring only when 
VP is not integrated by parts. 
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SUMMARY OF OBC CONTRIBUTIONS 

The resume of the contributions will be grouped relative to the spatial discretization method; 
i.e. finite difference, finite element, or spectral element, and unfortunately will contain a depth 
of detail which varies greatly owing in part to the contributions provided by the various 
contributors. Also, we admit up front that this summary is written by FEM guys who believe 
that they pretty well understand FEM OBC‘s-both virtues and maladies-but they do not 
much understand FDM OBC’s, a fact that must be kept in mind when reading this paper. 

Finite diference 

I. A Bottaro, IMHEF-EPFL, Lausanne, Switzerland 

1. Method. Transient, primitive variable on a staggered mesh. 

2. Test problem. PBCF. 

3. OBC. Four OBCs were tested. 
(a) OBC1: weighted true upwinding 

Here (1) without the VP-term and (3) are applied at the exit utilizing forward Euler in time, 
backward differencing in space and a standard upwind differencing scheme on the advection 
terms. After predicting the normal component of velocity at the new time level, it is adjusted 
via a constant additive factor to satisfy mass conservation. 

(b) OBC2: true upwinding replaced by zero normal derivative on inflow portions 

u, < 0, where acj/an = 0, 4 = (u, v,  7), replaces it. 
Here method (a) is applied everywhere except on those portions on which there is inflow, i.e. 

(c) OBC3: average convective derivative 

Here 

a4lat + c a4jan = 0, 

where 4 = (u, v, 7) and c is a ‘constant average phase speed’ applied everywhere on rOBC. 

(d) OBC4: convective derivative 

This is the same as OBC3 except that c is replaced by the local normal velocity, i.e. u,. 

4,  Results. OBCl leads to distorted convective cells which are confined primarily to less than 
one wavelength from the outlet. OBC2 leads to a gross distortion in the flow and temperature 
fields. OBC3 distorts the convective cells locally near the exit like OBC1, a result of a large 
pressure build-up near the exit which appears to be related to the choice of the value of the 
phase speed c. OBC4 diverges when a large enough portion (2 30%) of the open boundary has 
u, < 0. The author assessed the ‘practical’ performance of all four conditions as approximately 
the same, with OBC3 offering the simplest implementation. Figure 1 illustrates OBC3 with the 
imposed speed to equal 1.0 (the average flow velocity), the best of the three reported results for 
imposed speeds of 0.6, 0.8 and 1.0. (The average channel velocity is 1-0.) 
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Figure 1. Poiseuille-Benard channel flow: (a) streamlines; (b) vorticity; (c) pressure; (d) temperature 

11. M. H. Kobayashi, J. C. F. Pereira and J. M. M. Sousa, Mechanical Engineering Department, 
Institute Superior Tecnico, Lisbon, Portugal 

1. Method. Transient, primitive variable on both staggered and non-staggered meshes. 

2. Test problems. BFS, SBFS and PBCF. 

3. OBC. Five OBCs were tested; in each case the boundary condition requires iterating at 
each time step. 

(a) OBCl 

staggered mesh. At each instant in time 
One-sided difference approximation to a zero first derivative in the main flow direction; 

4 z  = 4 " I M , . h  (13) 

where 4 = (V, V,  T) and the superscript is an iteration index. 
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Open Bwnday Open Boundary 

I b) 
Open Boundary 

Figure 2. Mesh details (continuity equation is applied to shaded area only): (a) staggered grid, U-momentum equation; 
(b) staggered grid, V-momentum equation; (c) non-staggered grid 

(b) OBC2 

At each instant in time the U-velocity is obtained by satisfying mass conservation on the 
control volume using one-sided differences (see Figure 2(a)). In a similar fashion the I/-velocity 
is evaluated by mass balance applied to half the control volume (see Figure 2(b)); staggered 
mesh. 
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(The value of V K , ;  may be evaluated for J = 3, N J M 1 ,  since a solid wall exists at J = 2.) For 
the temperature field 

(16) Tk+1 - 
N 1 . J  - TkNiM1.J. 

(c) OBC3 

to the mean channel speed; staggered mesh. 
A monochromatic travelling wave was assumed at the outlet, with a prescribed speed equal 

4K.5 = 4kNi.J - (uAtIAxN4ki.J - 4kNIMi.J). (17) 

(d) OBC4 

nodes, i.e. 
Same as OBC2 but with a linear extrapolation for the temperature field from two interior 

and a uniform mesh. 

(e) OBC5 

Linear extrapolation for outflow pressure field and velocity, e.g. 

PB = P, + (PP - Pw)(l  - f x w ) ,  
where f x w  is a ‘linear interpolation factor, i.e. if this grid face is located midway between adjacent 
nodes W and P, then f x w  = 05’ (see Figure 2(c)). 

4. Results 

(a) BFS 

OBC3 treatment reverts to zero first derivative (OBCl) when steady state is reached. No 
significant differences were found in the steady state solutions obtained using OBCl and OBC3 
with the open boundary located at x = 7 or 15, except for the Vvelocity for the case of OBC 
located at x = 7. 

(b) SBFS 

OBC5 treatment yields close agreement of the present numerical predictions with reference 
values for both short and long domains, except for the V-velocity component at x = 3. However, 
this discrepancy represented less than 5% of the reference velocity and occurred in a section far 
from the outflow boundary. The proposed OBC is reported to be an accurate procedure to be 
used with non-staggered grids. 
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(c) PBCF 

OBCl proved to be a wrong and inaccurate open boundary condition in the case of the 
presence of travelling waves, with OBC effects extending far upstream. OBC2 yielded satisfactory 
‘outside domain U- and V-values’; this condition is independent of travelling waves. OBC3 
proved to be the best numerical treatment for velocity and temperature fields. However, the 
phase speed of the wave, taken as the mean channel velocity, was about 10% in error. Linear 
extrapolation in the temperature field at the boundary, OBC4, did not yield improved results 
compared with OBC2, because this field displayed a minimum at OBC location at time t , .  Figure 
3 displays some results. 

111. E. Gurgey, Hermann-Fottinger-Institut, Berlin, Germany, and F. Thiele, DLR, Abt. Turlri- 
lenzorschum, Berlin, Germany 

I .  Method. Steady state method employing fourth-order streamfunction equation. 

2. Test Problem. BFS. 

3. OBC. For the fourth-order equation two OBCs are needed and the ones employed were 

(V x *) * vv2* = 0, (u, * V)V x * = 0, (19) 

where u, is specified. (The authors state that u, was set equal to the undisturbed flow.) 

4 .  Results. The streamfunctions calculated for a long domain ( L  = 15) and a short domain 
( L  = 7) were in excellent agreement. A comparison of the results with the benchmark solution 
is shown in Figure 4. The agreement between the short domain (L = 7) and the same location 
in the long domain ( L  = 15) as well as with the benchmark problem is very good. However, in 
contrast with the other contributions, a graded mesh was used at the open boundary. 

IV. J. Goodrich, NASA Lewis Research Center, Cleveland, OH, U.S.A., and T. Hugstrom, 
University of New Mexico, Albuquerque, NM, U.S.A. 

I .  Method. Transient, streamfunction-vorticity formulation; second-order, centred in space 
with second-order Adams-Bashford discretization of transport terms and Crank-Nicolson 
discretization of viscous terms in time; uniform mesh. 

2. Test problem. BFS. 

3. OBC. The property that the spatial decay to Poiseuille flow for moderate values of Reynolds 
number Re scales asymptotically as Re-’ is used to derive two boundary conditions of the form 
B,($ - t j m )  = O(Re-2),  where +,(y) is the Poiseuille flow streamfunction. 

(a) OBCl 

B ,  = a 2 j a X 2  
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3) 

4) 

I 1 I f I 1 
r . 0  1 2 3  4 X l S  

8 1 1 1 1 1 

r o o  1 2 3  4 r - 5  

r . 0  1 2 1  4 a - 5  x r o  1 2 3  4 1 - 5  

c) d) 
Figure 3. PBCF field plots at t = fr  for (1 )  xmar = 10 and (2t(4) x = 5 using (2) OBC1, (3) OBC2 and (4) OBC3: (a) 

streamlines; (b) vorticity contours; (c) pressure contours; (d) temperature contours 

(b) OBC2 

where Ai is obtained from the approximate, reduced spatial Orr-Sommerfeld equation 

s + AiU,(Y)WI’ - Aiu:(y)y = W y ,  
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Figure 4. Velocity profiles for backward-facing step using a fourth-order streamfunction equation 

where s is the temporal exponential factor, i.e. exp(st), and )Li is an x-spatial Fourier trans- 
form variable. The smallest eigenvalue )Li(0) at s = 0 is used in OBC2. (See Reference 15 
for more details.) 

4. Results. Both boundary conditions worked very well. For both eddies none of the 
key parameters changed by more than 3% as the boundary was moved from L = 25 to 
7. Table I displays the results and a comparison with the benchmark solution’ for the 
BFS. 

V. K. Srinivasan and S. C. Rubin, Department of Aerospace Engineering and Engineering 
Mechanics, University of Cincinnati, Cincinnati, OH, U.S.A. 
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Table I 

Lower eddy 

Bnd. op. Boundary location Vortex centre +centre Qcentre Eddy length 

Reference case 30 (3.35, 0.3) - 0.0342 2.283 6.10 
2 25 (3.359, 0'2969) -0'034166 2.268 6.042 
1 15 (3'359, 0.2969) -0.034167 2.267 6.033 
2 15 (3.359, 0.2969) -0'034166 2.269 6.035 
1 7 (3.328, 0.2969) -0.0341 19 2.285 5.860 
2 7 (3.328, 0.2969) -0.034125 2.278 5.888 

Upper eddy 

Bnd. op. Boundary location Vortex centre *centre w, . , ,~~  Sepuration point 
~~ 

Reference case 30 (7.4, 0.8) 0.5064 - 1.322 4.85 
2 25 (7.422, 0.8125) 0.5069 - 1.189 4.799 

2 15 (7.422, 0.8 125) 0.5069 - 1.188 4.793 
1 15 (7.422, 0.8125) 0.5068 - 1.190 4.803 

1 7 (7, 0.7813) 0.5080 - 1'145 4.636 
2 7 (7, 0.7969) 0.5078 - 1.013 4.662 

I .  Method. Steady, primitive variable formulation of the reduced (parabolized) Navier-Stokes 
equations. 

2. Test problem. BFS. 

3. OBC. Dirichlet boundary condition for pressure if u, > 0. The negative convective fluxes 
are neglected, eliminating an OBC for velocity. A flux-vector-splitting technique is used for the 
pressure field such that the value pi is located between the (i - 1)th and ith grid locations. 

4. Results. The comparison with the BFS benchmark problem is very good for both the long 
and short domains. Figure 5 displays a comparison of streamwise velocity profiles with the 
benchmark solution, while Table I1 gives a comparison of the corresponding eddy lengths. In 
all cases there is good agreement between the results for various truncated domains as well as 
with the benchmark solution. 

VI. A.  0. Demuren and R. V. Wilson, Old Dominion University, Norfolk, VA, U.S.A., and 
T. Hagstrom, University of New Mexico, Albuquerque, NM, U.S.A. 

1. Method. Steady, primitive variable formulation with a TEACH-type discretization with 
staggered mesh. 

2. Test problem. BFS. 
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Figure 5. Velocity profiles for backward facing step using parabolized Navier-Stokes equations 

Table 11 

Domain Lower eddy Upper eddy Upper eddy 
length reattachment separation reattachment 

6.15 5.09 - x m a x  = 7 
x,,, = 15 6.22 5.125 10.22 
xmar = 30 6.22 5.09 1025 
Gartling' 6.10 4.85 10.48 

3. OBC. Three different OBCs were tested. 

(a) OBCl 

duldn = 0. 

(b) OBC2 

- P  + Re-' duJdn = 0, 

duJdn = 0. 
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(c) OBC3 

R. L. SANI AND P. M. GRESHO 

4. Results. OBCl produced the best results in the sense of minimal sensitivity to calculation 
length. Recirculation length, strength and location of the first eddy varied by less than 1% for 
lengths of 7, 10, 15 and 30. It is also the only boundary condition which produced the correct 
pressure distribution across the outflow for the L = 7 computation. OBC2 and OBC3 produced 
deviations of about 2% between calculations with L = 7 and the longer domain. They also 
produced nearly uniform pressure distribution at the outflow, which is incorrect. The authors 
conclude that OBCl appears best for this problem probably because the streamlines at  outflow 
are nearly parallel for all lengths. 

Finite element 

VII. P. L. Betts and A .  I. Sayma, Department of Mechanical Engineering, UMIST, 
Manchester, U.K. 

I .  Method. Transient, primitive variable formulation. Galerkin spatial discretization method 
using four-node bilinear isoparametric quadrilaterals for velocity and piecewise-constant pres- 
sure; forward Euler time-marching scheme with a fractional step pressure correction method. 

2. Test problem. BFS. 

3. OBC. Five different OBCs were tested for the short domain ( L  = 7). 

(a) OBCl 

(b) OBC2 

- P  + Re-' auJan = 0, 

u, = 0. 

(c) OBC3 

- P  + Re-' au,,/an = P,  

Re-' au& = 0, 
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where P was the pressure at x = 7 computed from the L = 15 solution by averaging the 
values of pressure from elements adjacent to x = 7. 

(d) OBC4 
- P + Re-' a u , p  = fl, 

Re- auJan = f 2 ,  

where f i  and f 2  were obtained by averaging the values obtained from the L = 15 solution at 
x = 7. 

(e) OBC5 

two elements preceding the boundary at the previous time step. 
In this case the functions fi and f z  were replaced by using values computed using results in 

4. Results 

(a) OBCl 

results, except that in the latter the pressure near the exit appeared to have a flatter profile. 
There were only small differences between the long-domain (L = 15) and short-domain (L = 7) 

(b) OBC2 

The results were virtually the same as for OBC1; the tangenial component of velocity at the 
exit computed via OBCl was very small compared with the normal component of velocity and 
hence in this case setting it to zero leads to only a small perturbation from the solution. 

(c) OBC3 

graphical accuracy and the pressure variation was also nearly identical. 
Here the normal velocity profile ( L  = 7) coincided with the long-domain ( L  = 15) results to 

(d) OBC4 

In this case the solution started to wiggle and then diverged. When the tangential traction 
condition was set equal to zero instead of fzr the solution obtained was equivalent to that for 
the OBC3 case. The latter occurs because the magnitude of the tangential traction condition 
Re-' au& is four orders smaller than the value of the pressure at the exit. 

(e) OBC5 

was set equal to zero. When there is no inflow (e.g. long domain), the method is often successful. 
In this case the solution diverged (on the short domain) even when the tangential traction 

A resume of eddy lengths and vortex centre locations is given in Table 111. 

Remark. An OBC similar to OBC5, in which fi and fi are updated at each iteration (or time 
step for a transient simulation), was advocated and (usually) successfully implemented by Taylor 
et al. 16--but again not for OBC's with inflow. 
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Table 111 

Lower eddy Upper eddy 

Domain L = 15H L = 7 H  L =  15H L = 7H 
Mesh (90 x 20) (42 x 20) (90 x 20) (42 x 20) 

Team OBCl OBC2 OBC3 OBC4 OBCl OBC2 OBC3 OBC4 

Vortex (2.92, (2.90, (2.90, (2.90, (2.90, (6.92, 
centre 0.175) 0.175) 0.175) 0.175) 0.175) 0.283) 
V at -0.0313 -0.0314 -0.0314 -0.0314 -0.0314 0.502 
vortex 
centre 
Vorticity - 2.472 - 2.460 - 2.460 - 2.445 - 2.445 1.536 
at vortex 
centre 
Reattach- 5.606 5.578 5.578 5592 5.592 10.43 
rnent at 
X =  
Separ- 4.20 4.29 4-29 4.28 4.28 
ation at 
X =  
Recir- 6.23 
culation 
length 

VIII. T. C. Papanastasiou, Department of Chemical Engineering, The University of Michigan, 
Ann Arbor, MI, U.S.A. 

1. Method. Steady, primitive variable. 

2. Testproblems. BFS and SBFS. 

3. OBC. In generating the Galerkin weak form of the equations for Co velocity and C-'  
pressure finite element basis functions, the viscous stress and pressure gradient terms in the 
Navier-Stokes equations must be integrated by parts using Green relationships so that the 
Galerkin projection will be convergent. Usually the resulting boundary integrals are utilized to 
form general natural boundary conditions as, for example, employed in the preceding contribution 
of Betts and Sayma. However, the technique employed here is to retain these boundary integrals 
in the weak form on the 'open' portions of the boundary, i.e. where velocities are not specified. 
Neglecting discretization error, this is equivalent to not imposing any boundary condition 
specifically as an OBC. 

4. Results. 

The comparison of the long- and short-domain results with the BFS and SBFS benchmark 
 solution^^.^ was very good.'' In the case of the SBFS the author notes that a refinement of the 
mesh did not significantly change the velocity and temperature traces on the open boundary 
(x = 7), suggesting a mesh-converged result or insensitivity to mesh refinement. Specifying a 
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pressure datum at a unique outflow node appears to improve convergence for non-linear 
problems. 

Spectral element 

Aerospace Engineering, Princeton University, Princeton, NJ, U.S.A. 
IX. A .  G. Tomboulides, M .  Israeli and G. E. Karniadakis, Department of Mechanical and 

1. Method. Transient, primitive variable, spectral element. 

2. Test problems. BFS and VSCC. 

3. OBC. The OBC here was velocity boundary conditions employing viscous sponges and a 
parabolized equation of motion at the outpow with variable viscosity in the streamwise and 
transverse directions. The streamwise viscosity is reduced to zero in a sponge layer close to the 
outflow, leading to a parabolized form of the Navier-Stokes equations; the transverse viscosity 
either is the molecular viscosity or is exponentially increased close to the outflow to suppress 
spurious wiggles. A consistent Neumann pressure boundary condition is derived from the linear 
momentum equation; the latter is discretized in time using a high-order integration scheme in 
which the pressure equation is decoupled from the solution of the momentum equation, i.e. a 
projection technique is employed. Both Dirichlet and Neumann OBC's for the pressure field 
were tested. 

4. Results 

(a) BFS 

In this case the authors predict no steady state but instead a time-periodic solution with a 
Strouhal number which they state was related to the instability of the shear layer emanating 
from the expansion. This result was in total disagreement with those of all the other contributors 
as well as the others in the minisymposium audience, though the authors point out that their 
results do agree with the earlier work of Kaiktsis et al. l 8  However, in Reference 19 it has been 
shown that these spectral element solutions are spurious-the solution is a stable steady state. 

(b) VSCC 

Here the standard zero-stress boundary condition, i.e. 

was first used to generate a solution which was in very good agreement with the benchmark 
solution. Then tests were performed using the new parabolized form of the equations and viscous 
sponges for both the Neumann and Dirichlet pressure OBCs. The results indicate that in general 
the parabolized boundary conditions perform better than the standard aupn = 0 boundary 
condition for both Dirichlet and Neumann boundary conditions for the pressure at the outflow. 
In addition, a preliminary analysis of the effect of the exponentially increasing transverse viscosity 
at the outflow suggests that it has a stabilizing role on the spurious pressure modes that tend 
to propagate upstream and confines their influence to a thin sponge layer close to the outflow. 
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DISCUSSION 

It is apparent from a perusal of the contributions that there is a myriad of techniques utilized 
by modellers to mediate the consequences of the unknown OBC. In the literature as well as in 
the contributions herein it is apparent that the finite difference community is a bit bolder in 
formulating and utilizing OBC‘s. There seems to be less variety in the finite element and spectral 
element areas, though the results here seem to indicate the success rare is reasonably good. 
Perhaps, it is a reflection of the basic rigidity in the fundamental discretization techniques, i.e. 
weighted residual vis-A-vis Taylor series. While it appears that oftentimes finite difference 
practitioners deal with boundary conditions as separate entities, there is less tendency for this 
in the weighted residual and, in particular, Galerkin techniques-part of the ‘package deal’ 
referred to in Reference 20. 

In addressing the finite difference discretization issue, Strikwerda” states ‘Many schemes also 
require additional boundary conditions, called numerical boundary conditions, to determine 
the solution uniquely’, perhaps suggesting why finite difference techniques are oftentimes referred 
to as ‘schemes’ rather than ‘methods’. The integral balance inherent in the weighted residual 
methods, on the other hand, intimately connects the bulk (domain) with the boundary; oftentimes 
this not only points to admissible boundary conditions but also provides discrete analogues-as 
in the case of natural boundary conditions. This coupling also necessarily engenders a mode of 
analysis and development which links the bulk balances and boundary conditions and abrogates 
the need for numerical boundary conditions. After some comments on the results of the test 
problems, which will necessarily be somewhat limited because of the small number of con- 
tributors, we will often offer some additional comments on issues associated with solvability of 
the discrete and semidiscrete versions of the Navier-Stokes (and advection-diffusion) equations. 

For finite difference and finite volume discretizations the two most popular and sometimes 
successful OBC‘s were 

d ( . ) / d n  = 0, (31) 

(32) a( . ) /& + ii, a ( . ) / &  = 0, 

where U, is usually some average velocity. These OBC’s were generally successful for the 
unstratified test cases, primarily BFS, and less successful for the stratified ones, where, for 
example, in the PBCF noticeable distortions in the fields are present-albeit localized near the 
outlet. The quality of the result was somewhat dependent on the choice and implementation of 
ii, in the transient techniques. In the Galerkin finite element case the natural OBC’s of normal 
and tangential forces set equal to zero were successful for both unstratified test cases and 
compared well with benchmark solutions. In the stratified test cases this boundary condition in 
general should be modified to account for at least pressure variation effects at the open 
b ~ u n d a r y , ~  since in most cases the viscous normal force is comparatively small, The best way 
to modify this open boundary condition is still an open issue. 

In Reference 22 the following question was asked: ‘What is the implied BC for the pressure 
Poisson equation at an “outflow” (open) portion of the domain when the SIMPLE method (or 
one of its variants) is used to obtain a solution (i.e. Ax and At + 0) of the Navier-Stokes 
equations?’. While this question seemingly remains open, it seems appropriate in this paper to 
at least hazard a guess as to its answer-if one exists. Thus below we propose at least one answer 
which, if not exact, may be close. We must hedge for two reasons: (i) there are very likely ‘many’ 
versions of SIMPLE and (ii) all descriptions of it that we have seen are unclear because of the 
complexity of the inner and outer iterations with respect to velocity-pressure coupling. The 
description offered below is placed in the related context of a simple (low-order) semi-implicit 
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projection method that began with ChorinZ3 (see also Reference 24). It was inspired principally 
by the work of Schutt,' but the recent paper by Blosch et a1.25 was also influential. Suppose 
the boundary comprises a Dirichlet portion (r,) and an open portion (rN). A two-step 
semi-implicit projection method for solving (1) and (2), where (1) is restated as 

aqat + v p  = f + Re-lv'u, (33) 

is as follows. 
(i) Find an intermediate/provisional velocity (ii) by solving 

(ii - u,)/At = f, + Re-'V2ii in R, 

with 

i i=  w , + ~  on To, aiilan = 0 on rN, 
where w(t) is given. 

(ii) Find the final velocity (urn+ 1) from the projection 

u , + ~  = ii - AtVP,+, and V . U , + ~  = 0 in Q, (3 5a,b) 

n * urn+ = n - w,+ on TD, 

n . u , + ,  = n - i i  + 6 on rN, 

where 6 (another 'intermediate' quantity) is derived from the overall (global) mass balance 
constraint, jr n urn+ = 0, as 

J r D n * w r n + l  + J r N ( n . i + a ) = o ,  

i.e. 

where L, is (in 2D) the length of r N  (LN becomes the corresponding area, AN, in 3D). The 
projection is realized by solving the following (consistent singular) Poisson equation implied by 
(35) and (36): 

V * i i  
At 

VP,+ ,  = ~ in Q, 

aP,+,/an = 0 on rD, 
aP,+,/an = -8/At on r N ,  

(374 

after which (35a) yields urn+'. Thus, according to this simple interpretation of SIMPLE, the 
implied OBC for the PPE on rN is simply the Neumann BC given by (37c). 
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Remarks 

1. Global mass conservation is the only ‘physics’ behind this OBC. 
2. A hydrostatic pressure mode always and legitimately exists, so that the induced matrix 

singularity may be legitimately removed by pegging one pressure. 
3. Since ii = urn + O(At) and jr n-urn  = 0, it follows that 6 = O(At) and thus a P , + , / a n  = 

0(1) on rN; the normal derivative is finite even for At -+ 0. 
4. Even though %/an = 0 on rN, durn+ , / a n  # 0, but it is probably small-O(At). 
5 .  More than one open boundary (e.g. one pipe splitting into two or more) would cause 

trouble in that the same pressure gradient must be applied on each portion of r,-thus 
indicating that the simple ‘physics’ (mass conservation) may not be enough in all cases. 

Next we pursue further some additional aspects of the so-called ‘free boundary condition’ of 
Papanastasiou et a l l 7  to show that it is sometimes a sort of fuzzy boundary condition (a new 
term that we coined during these OBC studies and one that should probably see widespread 
use) in that finite meshes often generate useful (even good) results but the h -+ 0 limit leaves 
something to be desired related to boundary conditions for the PDE’s. To this end, consider the 
simple scalar advection-diffusion equation in one dimension, 

aTpt  + u aT/ax = K a2T/ax2 + s, o < x .= L, (38) 

where u, K and S are constants and with, for simplicity, a boundary condition T = 0 at x = 0. 
The GFEM formulation of this is 

where Th(x, t) = ~ ~ = = 1  T,{t)cp,(x) and cpi is the basis function associated with node i ;  i = N is the 
last node, at x = L. Equation (39) is of course a coupled system of N ODE‘S; if the steady state 
version is the one of interest, aP/at is omitted and the finite-dimensional problem simplifies to 
that of a system of N simultaneous linear equations. In the conventional GFEM the boundary 
term (last term on right-hand side, obtained as a result of integration by parts of the diffusion 
term) is necessarily replaced by some relevant boundary condition information so that it, like the 
source term S,  becomes data. For example, a general boundary condition is the Robin boundary, 
condition 

(40) 

where H (heat transfer coefficient), T,  (sink temperature) and q (applied heat flux) are given data 
and the last term on the right-hand side of (39) is replaced by qi [q  - H(Th - TJ]lx=L; also, the 
term ‘piHThI,=L is transposed to the left-hand side. For the OBC case of interest herein we have 
H = q = 0 and the boundary condition dT/dx = 0 is automatically realized by simply dropping 
the last term on the right-hand side-sometimes referred to as a ‘do nothing’ (natural) boundary 
condition. 

In the unconventional FEM of Papanastasiou et aL17 the term (dTh/ax)l,,, is treated quite 
differently. It is assumed unknown and thus transposed to the left-hand side, so that the weak 
formulation reads 

K aT/ax + H(T - T,) = 4, 

J ‘ P i - + u  j q i - + K  a~~ (Jdqi a~~ ‘Pi 8 ~ ~ 1  >- J qiS, i = 1, 2, ..., N ,  (41) ax ax ax x = L  

and corresponds to their free boundary condition. 
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Let us compare the equations (39) with the term (dTh/dx)lx=L dropped and (41) for two types 
of basis functions, linear and quadratic (both continuous piecewise polynomials). In the linear 
case the result is (for a uniform grid with node spacing h) 

(h/6)(Z-i +4’f,+ T i + 1 ) + ( ~ / 2 ) ( ~ + ~ - - - 1 ) + ( K / h ) ( - T - I  + 2 T - - + l ) = S h  (42) 

for i = 1,2,. . . , N - 1, from (39) or  (41), which clearly approximates (38). For i = N, however, 
the results are different: (39) gives 

(43) (h/6)(2TN + T N - ~ )  + (U/2)(T, - TN-1) + (K/h)(TN - TN-1) = Sh/2, 

(h/6)(2TN + TN-  1) 4- (U/2)(T, - TN- 1) 4- 0 = Sh/2. 

whereas (41) results in 

(44) 

While (43) clearly converges to dT/dx = 0 (the OBC) as h -+ 0 and is the GFEM real- 
ization/approximation to dT/dx = 0 for finite h, (39) seems to yield, upon multiplication by 2/h 
and letting h --* 0, 

aT/at + aT/ax = s (45) 

which, if S = 0, is the popular ‘radiation’ OBC discussed earlier. Thus for u # 0 the free boundary 
condition seems to be legitimate and probably useful (at least when S = 0 and possibly otherwise). 
If, however, u = 0, the resulting transient heat equation seems to acquire the boundary condition 
T = T,(L) + S t ,  which is legitimate but again is probably only useful if S = 0. Finally, for the 
special limiting case of steady heat conduction, Kd2T/dx2 = S, (44) becomes Sh/2 = 0 and the 
free boundary leads to an ill-posed problem in linear algebra. Again only S = 0 makes much 
sense. 

For quadratic elements (basis functions) we obtain the following results. 
Node N-1 from (39) or (41): 

(4h/3O)(TN-z + ~ T N - ,  TN) + (~U/~)(TN - TN-2) (4K/3h)(-TN-z + 2 T ~ - 1  - TN) = (4h/3)S, 

(46) 

which, upon division by 4h/3, clearly approximates (38) as it should. 
(ii) Node N from (39): 

( h / 1 5 ) ( - T N - 2  + 2TN-1 + ~ F N )  + (U/~ ) (TN-~  - 4 T ~ - 1  + ~ T N )  + (K/6h)(Tj+, - ~ T N - ~  + 7TN) 

= (h/3)S, (47) 

which can be shown to approximate dT/dx = 0 as h + 0. 
(iii) Node N from (41): 

( h / l 5 ) ( - T , - z  + 2?~-1  + 4TN) + (~/6)(T,-z - 4 T ~ - 1  3TN) + (K/3hH-TN-z 4- 2 T ~ ~ 1  - TN) 
= hS/3, (48) 

which, upon division by h/3 and letting h -+ 0, yields (38); i.e. in the limit the last nodal equation 
merely replicates the PDE and there seems to be no OBC at all. Furthermore, for the limiting 
case of steady heat conduction (Pi = 0, u = 0) equation (48) is seen to be idential to (46), i.e. 
K ( -  T N - 2  + 2TN-1 - TN)/h2 = S. While both are legitimate PDE approximations, it is the 
redundancy/repetition that is of concern. The last two rows of the resulting matrix are identical 
and thus the matrix is singular. For this simple case the singular system happens to be 
consistent-the right-hand-side vector is orthogonal to the null vector of the transpose matrix, 
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whose null vector is (0 -* 0 1 - l)T. Thus a solution exists but is not unique. Any amount of 
the vector (1 2 3 . . . N)T, which is the null vector of the heat conduction matrix (and mimics 
T = x, a function in the null space of d2T/dxZ), can be added to any particular solution. Also, 
for S not constant, it is (much) worse: since the null vector is then generally not orthogonal to 
the right-hand-side vector, the system is ill-posed and has no solution. 

These results would appear to generalize to the multidimensional energy and Navier-Stokes 
equations and, for the quadratic basis functions used by Papanastasiou et aI.,l7 would be such 
that the PDEs themselves, rather than a PDE boundary condition, appear to be the h + 0 limit 
of the so-called free boundary condition. Yet the results on two of the benchmarks presented 
by Papanastasiou et al. are clearly quite good, even excellent, and this summarizes a particular 
case of a general dilemma-one which can occur with FDM or FEM: some fuzzy boundary 
conditions (numerical recipes) generated by clever researchers seem to deliver useful results on 
thefinite meshes on which we all compute but which appear to be ill-posed in some sense (and 
for some problems) as h -, 0. We thus implore the mathematicians, especially those who are also 
numerical anlaysts, to analyse these fuzzy boundary conditions and try to make more sense out 
of what seems to us to be a still very confused area. We all need to learn more regarding ‘finite 
h’ mathematics and distinguish/separate it from h + 0 analyses. 

We conclude by mentioning one more FBC that often generates useful results in the FIDAP 
code.26 In FIDAP 7.0 the following OBC is employed: 

1. Start with the homogeneous NBC PRe-’ &,,/an - P = 0. 
2. Obtain the solution of the discrete equations at the end of one iteration. 
3. Update the NBC, this time inhomogeneous, in the normal momentum equation by 

assuming &,,/an = 0 and thus that fn = -P,  where P comes from the solution in step 2. 
This procedure leads to a force vector on the RHS. 

4. Repeat until convergence; the ‘convergence’ is usually that involving a non-linear algebraic 
system. This procedure is called an FBC because we are not really sure which PDE BC is being 
approximated-although it appears to be au,,/dn = 0, which seems to lose a pressure BC or even 
be ill-posed as h + 0. 

It appears that the mitigating factor for FBC‘s is truncation error associated with finite h;  that 
is, if the discretized system is solvable, the non-uniqueness issue associated with the h -+ 0 limit 
is ‘resolved’ by truncation error effects for finite h-the latter causing the solution to be ‘unique’ 
and to generate a ‘truncation-error’-dependent solution branch. This being the case, one would 
expect the solution to experience ‘problems’ with mesh refinement, a property which has been 
demonstrated by Novy et aL2’ in modelling flow in porous media (‘the quality of the solutions 
decayed with mesh refinement’). 

In closing, it may be relevant to report a very recent finding: at the (September 1993) Finite 
Elements in Fluids Conference in Barcelona, J. T. Oden announced the (re)discovery of the free 
boundary condition of Papanastasiou et al. and showed some impressively accurate results 
for the BFS problem. T. J. Hughes then stated that he too has had some good experience with 
it, and attributed it to A. Mizukami, but avoided ‘advertising’ it because-as we have pointed 
out-‘it seems like no boundary condition at  all’. 

Finally, the varied and still confused state of OBC theory and application is illustrated by 
the recent publications of Johansson28 and Jin and B r a ~ a . ~ ’  The former utilized homogeneous 
higher-order derivatives on the velocity components and specified the pressure, while the latter 
imposed an advection-diffusion equation on the velocity components and a homogeneous 
third derivative on the ‘pressure’ variable. For another FBC see the recent publication of 
Rama~wamy,~’ who implemented the OBC designed by Shimura and K a ~ a h a r a . ~ ’  
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CONCLUSIONS 

We have made some attempts at shedding more light on the difficult and unresolved area of 
seeking good OBCs for incompressible flow simulations. It has been an exercise in frustration 
and we are not thrilled with the results obtained, even though they may still be useful to some 
researchers; thus we pass the baton. We believe that the most important issue for incompressible 
flows is that the incompressibility constraint is all-pervasive and even shows up (or should) on 
open boundaries, with the concomitant (and often awkward) result of coupling the pressure 
and the normal velocity there-either explicitly or implicitly (see also Reference 32). We have 
also identified what we term fuzzy boundary conditions that are begging for deeper under- 
standing. 
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